
Math 255A Lecture 1 Notes

Daniel Raban

September 28, 2018

1 The Hahn-Banach Theorem

1.1 The real Hahn-Banach theorem

Theorem 1.1 (Hahn-Banach, analytic form). Let V be a vector space over R, and let
p : V → R be a map which satisfies

1. positive homogeneity: p(λx) = λp(x) for all x ∈ V , λ > 0,

2. subadditivity: p(x+ y) ≤ p(x) + p(y) for all x, y ∈ V .

Let W ⊆ V be a linear subspace and let g : W → R be a linear form such that g(x) ≤ p(x)
for all x ∈ W . Then there exists a linear form f : V → R which agrees with g on W such
that f(x) ≤ p(x) for all x ∈ V .

Proof. We will use Zorn’s lemma to obtain f . For notation, we write D(f) as the domain
of f . Let us consider the set

P = {h | h : D(h)→ R, D(h) ⊆ V is a linear subspace s.t. W ⊆ D(h),

h|W = g, h(x) ≤ p(x), x ∈ D(h)}.

P 6= ∅ because g ∈ P . P is equipped with the partial order relation ≤:

h1 ≤ h2 ⇐⇒ D(h1) ⊆ D(h2) and h2 extends h1.

Claim: The set P is inductive, in the sense that any totally ordered subset Q ⊆ P has
an upper bound; i.e. there exists x ∈ P such that a ≤ x for all a ∈ Q. Write Q = (hj)j∈I .
Let D(h) =

⋃
j∈I D(hj), and define h by saying x ∈ D(hj) =⇒ h(x) = hj(x). The

function h is well defined, h ∈ P , and hj ≤ h for all j ∈ I.
By Zorn’s lemma, we conclude that P has a maximal element f , in the sense that if

f ≤ h ∈ P , then h = f . We have to check that D(f) = V ; proceed by contradiction. If
D(f) 6= V , let x0 ∈ V \ D(f), and define h by D(h) = D(f) + Rx0 and for x ∈ D(f),
h(x + tx0) = f(x) + tα, where α ∈ R is to be chosen such that h ∈ P (h(x) ≤ p(x) for
x ∈ D(h)).
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We have to arrange: f(x) + tα ≤ p(x+ tx0) for all t ∈ R and x ∈ D(f). By the positive
homogeneity of p, we need only check when t = ±1. So we need to satisfy:

f(x) + α ≤ p(x+ x0) f(x)− α ≤ p(x− x0).

In other words, we have to choose α so that

sup
y∈D(f)

f(y)− p(y − x0) ≤ α ≤ inf
x∈D(f)

p(x+ x0)− f(x).

This is possible as f(y) − p(y − x0) ≤ p(x + x0) − f(x) for all x, y ∈ D(f), which follows
from f(x+ y) ≤ p(y − x0) + p(x+ x0) (by p(x+ y) ≥ f(x+ y)). We conclude that f ≤ h,
h 6= f , which contradicts the maximality of f .

1.2 The complex Hahn-Banach theorem

Definition 1.1. Let V be a vector space over K = R or C. A function p : V → [0,∞) is
a seminorm if

1. p(λx) = |λ|p(x) for all x ∈ V , λ ∈ K

2. p(x+ y) ≤ p(x) + p(y) for all x, y ∈ V .

Theorem 1.2 (Hahn-Banach, complex version). Let V be a vector space over C, W ⊆ V
a C-linear subspace, and p : V → [0,∞) a seminorm. Let g : W → C be C-linear such that
|g(x)| ≤ p(x) for all x ∈ W . Then g can be extended to a C-linear form f : V → C such
that |f(x)| ≤ p(x) for all x ∈ V .

Proof. Let g = g1 + ig2, where g1(x) = Re(g(x)) and g2(x) = Im(g(x)); g1, g2 are R-linear.
and defined on W . Note that g1(iy) = Re(g(iy)) = Re(ig(y)) = −g2(y), so we can recover
g2 from g1. Now g1(y) ≤ p(y) for all y ∈ W , so by the real version of the Hahn-Banach
theorem, there exists an R-linear f1 : V → R such that f1|W = g1 and f1(x) ≤ p(x) for
all x ∈ V . Let f(x) = f1(x) − i(f1(ix)). Then, by our previous observation, f |W = g.
Note that f is R-linear and f(ix) = f1(ix) − if1(−x) = i(f1(x) − if1(ix)) = if(x), so
f is C-linear. Finally, we check that |f(x)| ≤ p(x) for all x ∈ V . If f(x) 6= 0, write
f(x) = |f(x)|eiϕ with ϕ ∈ R. Then

|f(x)| = e−iϕf(x) = f(e−iϕx) = f1(e
−iϕx) ≤ p(e−iϕx) = p(x).

1.3 Introduction to dual spaces

Definition 1.2. Let B be a complex Banach space. The dual space B∗ is the space of
linear continuous maps ξ : B → C.

The form on B ×B∗ given by (x, ξ) 7→ ξ(x) = 〈x, ξ〉 is bilinear. There may exist linear
forms in B∗ which are not of the form ξ 7→ 〈x, ξ〉.
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