Math 255A Lecture 1 Notes

Daniel Raban

September 28, 2018

1 The Hahn-Banach Theorem

1.1 The real Hahn-Banach theorem

Theorem 1.1 (Hahn-Banach, analytic form). Let V be a vector space over \mathbb{R} , and let $p: V \to \mathbb{R}$ be a map which satisfies

- 1. positive homogeneity: $p(\lambda x) = \lambda p(x)$ for all $x \in V$, $\lambda > 0$,
- 2. subadditivity: $p(x+y) \le p(x) + p(y)$ for all $x, y \in V$.

Let $W \subseteq V$ be a linear subspace and let $g: W \to \mathbb{R}$ be a linear form such that $g(x) \leq p(x)$ for all $x \in W$. Then there exists a linear form $f: V \to \mathbb{R}$ which agrees with g on W such that $f(x) \leq p(x)$ for all $x \in V$.

Proof. We will use Zorn's lemma to obtain f. For notation, we write D(f) as the domain of f. Let us consider the set

$$P = \{h \mid h : D(h) \to \mathbb{R}, D(h) \subseteq V \text{ is a linear subspace s.t. } W \subseteq D(h), \\ h|_W = g, h(x) \le p(x), x \in D(h)\}.$$

 $P \neq \emptyset$ because $g \in P$. P is equipped with the partial order relation \leq :

$$h_1 \leq h_2 \iff D(h_1) \subseteq D(h_2)$$
 and h_2 extends h_1 .

Claim: The set P is inductive, in the sense that any totally ordered subset $Q \subseteq P$ has an upper bound; i.e. there exists $x \in P$ such that $a \leq x$ for all $a \in Q$. Write $Q = (h_j)_{j \in I}$. Let $D(h) = \bigcup_{j \in I} D(h_j)$, and define h by saying $x \in D(h_j) \implies h(x) = h_j(x)$. The function h is well defined, $h \in P$, and $h_j \leq h$ for all $j \in I$.

By Zorn's lemma, we conclude that P has a maximal element f, in the sense that if $f \leq h \in P$, then h = f. We have to check that D(f) = V; proceed by contradiction. If $D(f) \neq V$, let $x_0 \in V \setminus D(f)$, and define h by $D(h) = D(f) + \mathbb{R}x_0$ and for $x \in D(f)$, $h(x + tx_0) = f(x) + t\alpha$, where $\alpha \in \mathbb{R}$ is to be chosen such that $h \in P$ ($h(x) \leq p(x)$ for $x \in D(h)$).

We have to arrange: $f(x) + t\alpha \le p(x + tx_0)$ for all $t \in \mathbb{R}$ and $x \in D(f)$. By the positive homogeneity of p, we need only check when $t = \pm 1$. So we need to satisfy:

$$f(x) + \alpha \le p(x + x_0) \qquad f(x) - \alpha \le p(x - x_0).$$

In other words, we have to choose α so that

$$\sup_{y \in D(f)} f(y) - p(y - x_0) \le \alpha \le \inf_{x \in D(f)} p(x + x_0) - f(x).$$

This is possible as $f(y) - p(y - x_0) \le p(x + x_0) - f(x)$ for all $x, y \in D(f)$, which follows from $f(x + y) \le p(y - x_0) + p(x + x_0)$ (by $p(x + y) \ge f(x + y)$). We conclude that $f \le h$, $h \ne f$, which contradicts the maximality of f.

1.2 The complex Hahn-Banach theorem

Definition 1.1. Let V be a vector space over $K = \mathbb{R}$ or \mathbb{C} . A function $p: V \to [0, \infty)$ is a seminorm if

- 1. $p(\lambda x) = |\lambda| p(x)$ for all $x \in V, \lambda \in K$
- 2. $p(x+y) \le p(x) + p(y)$ for all $x, y \in V$.

Theorem 1.2 (Hahn-Banach, complex version). Let V be a vector space over \mathbb{C} , $W \subseteq V$ a \mathbb{C} -linear subspace, and $p: V \to [0, \infty)$ a seminorm. Let $g: W \to \mathbb{C}$ be \mathbb{C} -linear such that $|g(x)| \leq p(x)$ for all $x \in W$. Then g can be extended to a \mathbb{C} -linear form $f: V \to \mathbb{C}$ such that $|f(x)| \leq p(x)$ for all $x \in V$.

Proof. Let $g = g_1 + ig_2$, where $g_1(x) = \operatorname{Re}(g(x))$ and $g_2(x) = \operatorname{Im}(g(x))$; g_1, g_2 are \mathbb{R} -linear. and defined on W. Note that $g_1(iy) = \operatorname{Re}(g(iy)) = \operatorname{Re}(ig(y)) = -g_2(y)$, so we can recover g_2 from g_1 . Now $g_1(y) \leq p(y)$ for all $y \in W$, so by the real version of the Hahn-Banach theorem, there exists an \mathbb{R} -linear $f_1: V \to \mathbb{R}$ such that $f_1|_W = g_1$ and $f_1(x) \leq p(x)$ for all $x \in V$. Let $f(x) = f_1(x) - i(f_1(ix))$. Then, by our previous observation, $f|_W = g$. Note that f is \mathbb{R} -linear and $f(ix) = f_1(ix) - if_1(-x) = i(f_1(x) - if_1(ix)) = if(x)$, so f is \mathbb{C} -linear. Finally, we check that $|f(x)| \leq p(x)$ for all $x \in V$. If $f(x) \neq 0$, write $f(x) = |f(x)|e^{i\varphi}$ with $\varphi \in \mathbb{R}$. Then

$$|f(x)| = e^{-i\varphi}f(x) = f(e^{-i\varphi}x) = f_1(e^{-i\varphi}x) \le p(e^{-i\varphi}x) = p(x).$$

1.3 Introduction to dual spaces

Definition 1.2. Let *B* be a complex Banach space. The **dual space** B^* is the space of linear continuous maps $\xi : B \to \mathbb{C}$.

The form on $B \times B^*$ given by $(x, \xi) \mapsto \xi(x) = \langle x, \xi \rangle$ is bilinear. There may exist linear forms in B^* which are not of the form $\xi \mapsto \langle x, \xi \rangle$.